Selected Publications (*Corresponding author, #equal contribution)
Full List of Published work:
https://orcid.org/0000-0002-5108-6487 and https://www.pubfacts.com/author/Samson+Afewerki 
Picture1_edited.jpg

50. G. U. Ruiz-Esparza, X. Wang, X. Zhang, S. Jimenez-Vasquez, L. Diaz-Gomez, A.-M. Lavoie, S. Afewerki, A. A. Fuentes-Baldemar, R. Parra-Saldivar, N. Jiang, N. Annabi, B. Saleh, A. K. Yetisen, A. Sheikhi, T. H. Jozefiak, S. R. Shin, N. Dong, A. Khademhosseini. Nanoengineered Shear-thinning Hydrogel Barrier for Preventing Postoperative Adhesions. Micro. Nano Lett. 2021, accepted.

TOC-Bi-Ti-Phenolic_edited.jpg

51. G. Xiao, Y. Yin, W. Zheng, M. Dai, S. Afewerki, A. Chen, J. Zhang, Y. Zhang, W. Zhang, Y. S. Zhang, Bi/Ti-Phenolic Network Induced Biomimetic Synthesis of Mesoporous Hierarchical Bimetallic Hybrid Nanocatalysts With Enhanced Visible-light Photocatalytic. Colloids Surf., A. 2021, 127518. https://doi.org/10.1016/j.colsurfa.2021.127518.   

TOC-rev_edited.jpg

49. E. S. Araújo, T. D. Stocco, G. F. Sousa, S. Afewerki,* F. R. Marciano, M. A. F. Corat, M. M. Paula, T. F. C. L. Verde, M. C. M. Silva, A. O. Lobo*. Oxygen-Generating Microparticles in Chondrocytes-laden Hydrogels by Facile and Versatile Click Chemistry Strategy. Colloids. Surf. B, 2021, 205, 111850. https://doi.org/10.1016/j.colsurfb.2021.111850.  

TOC-Accelerating%20Amine%E2%80%90Catalyz

48. Ma, G.; Afewerki, S.; Ibrahem, I.; Córdova, A. Accelerating Amine-Catalyzed Asymmetric Reactions by Intermolecular Cooperative Thiourea-Oxime Hydrogen-Bond Catalysis. Eur. J. Org. 2021, 2021, 3043. https://doi.org/10.1002/ejoc.202100315.  

TOC-A%20Nanostructured%20non-Newtonian%2

48. X. Wang, Z. Liu, D. A. Sandoval-Salaiza, S. Afewerki, M. G. Jimenez-Rodriguez, L. Sanchez-Melgar, G. Güemes-Aguilar, D. G. Gonzalez-Sanchez, O. Noble, C. Lerma, R. Parra-Saldivar, D. R. Lemos, G. A. Llamas-Esperon, J. Shi, L. Li, A. O. Lobo, A. A. Fuentes-Baldemar, J. V. Bonventre,* N. Dong,* G. U. Ruiz-Esparza*. Nanostructured Non-Newtonian Drug Delivery Barrier Prevents Postoperative Intrapericardial Adhesions. ACS Appl. Mater. Interfaces, 2021, https://doi.org/10.1021/acsami.0c20084.

TOC4_edited.jpg

47. S. Afewerki,* Nicole Bassous, Samarah Harb, Marcus Alexandre F. Corat, Sushila Maharjan, Guillermo U. Ruiz-Esparza, Thomas Jay Webster, Carla Roberta Tim, Bartolomeu Cruz Viana, Danquan Wang, Xichi Wang, Fernanda Roberta Marciano, and Anderson de Oliveira Lobo,*. Engineering Multifunctional Nanofibers for Abdominal Hernia Repair. Communications Biology-Nature, 2021, 4, 233. https://www.nature.com/articles/s42003-021-01758-2.  

TOC-lignin_edited.jpg

46. S. Afewerki*, X. Wang, G. U. Ruiz-Esparza, C.-W. Tai, X. Kong, S. Zhou, K. Welch, P. Huang, R. Bengtsson, C. Xu*, M. Strømme*, Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels. ACS Nano. 2020, 14, 12, 170004. https://doi.org/10.1021/acsnano.0c06346.   

TOC_edited.jpg

45. F. C. Oliveira, J. O. Carvalho, L. S. S. M. Magalhães, J. M. da Silva, S. R. Pereira, A. L. G. Júnior, L. M. Soares, L. I. C. Cariman, R. I. da Silva, B. C. Viana, E. C. Silva-Filho, S. Afewerki, H. N. da Cunha, M. L. Vega, F. R. Marciano, and A. O. Lobo. Biomineralization inspired engineering of nanobiomaterials promoting bone repair. Mater. Sci. Eng. C. 2020, 120, 111776. https://doi.org/10.1016/j.msec.2020.111776.     

Phyco-remediation%20of%20swine%20wastewa

44. I. Y. López-Pacheco, A. Silva-Núñez, J. S. García-Pérez, D. Carrillo-Nieves, C. Salinas-Salazar, C. Castillo-Zacarías, S. Afewerki, D. Barceló, H. N .M. Iqbal, R. Parra-Saldivar. Phyco-remediation of swine wastewater as a sustainable model based on circular economy. J. Environ. Manage. 2020, 278, 111534.                                                        https://doi.org/10.1016/j.jenvman.2020.111534.   

TOC-Oxygen-Generating%20Smart%20Hydrogel

43. Montesdeoca, C. Y. C.; Afewerki, S.; Stocco, T. D.; Corat, M. A. F.; De-Paula, M. M. M.; Marciano, F. R.; Oliveira, F. C.; Lobo, A. O. Oxygen-generating Smart Hydrogels Supporting Chondrocytes Survival in Oxygen-Free Environments. Colloids. Surf. B, 2020, 194, 111192. https://doi.org/10.1016/j.colsurfb.2020.111192.

TOC-Efficient%20Heterogeneous%20Palladiu

42. Afewerki, S. *; Palo-Nieto, C.; Córdova, A.* Efficient Heterogeneous Pd-Catalyzed Transfer Hydrogenolysis of Benzylic Alcohols by Formic Acid. Synthesis, 2020. https://doi.org/10.1055/s-0040-1707398.

RICE-TOC-revised-latest_edited.jpg

41. Afewerki, S.*; Franco, A.; Balu, A. M.*; Tai, C.-W.; Luque, R.; Córdova, A.* Sustainable and recyclable heterogeneous palladium catalysts from rice-husk-derived biosilicates for Suzuki-Miyaura cross-coupling, aerobic oxidations and stereoselective cascade carbocyclizations. Sci. Rep. 2020, 10, 6407.https://doi.org/10.1038/s41598-020-63083-8.

Printing%203D%20Hydrogel%20Structures%20

40. Leila Samara S. M. Magalhães, Francisco Eroni Paz Santos, Conceição de Maria Vaz Elias, Samson Afewerki, Gustavo F. Sousa, Andre S. A. Furtado, Fernanda R. Marciano, Anderson O. Lobo. Printing 3D Hydrogel Structures Employing a Low-Cost Stereolithography Technology. J. Funct. Biomater. 2020, 11, 12.

https://doi.org/10.3390/jfb11010012.

Fig_edited.jpg

39. Morais, A. I .S.; Wang, X.; Vieira, E. G.; Viana, B. C.; Filho, E. C. S.; Furtini, J. O. A.; Afewerki, S.; Corat, M. A. F.; Silva, H. S.; Marciano, F. R.; Ruiz-Esparza, G. U.; Stocco, T. D.; De-Paula, M. M. M.; Lobo, A. O. Electrospraying oxygen-generating microparticles for tissue engineering applications. Int. J. Nanomed. 2020, 15, 1173.                                      https://doi.org/10.2147/IJN.S237334.

TOC_edited.jpg

38. Morais, A. Í .S.; Vieira E. G.; Afewerki, S.; Sousa R. B.; Honorio, L. M. C.; Cambrussi, A. N. C. O.; Santos, J. A.; Bezerra, R. D. S.; Furtini, J. O. A.; Filho, E. C. S.; Webster, T. J. and Lobo, A. O. Fabrication of polymeric microparticles by electrospray: The impact of experimental parameters. J. Funct. Biomater. 2020, 11, 4. Special Issue ”Fibrous Scaffolds for Tissue Engineering Applications”. https://doi.org/10.3390/jfb11010004.

37. S. Afewerki,* N. Bassous, S. Harb, C. Palo-Nieto, G. U. Ruiz-Esparza, F. R. Marciano, T. J. Webster, A. S. A. Furtado, A. O. Lobo.* Advances in Dual Functional Antimicrobial and Osteoinductive Biomaterials for Orthopedic Applications, Nanomedicine: Nanotechnology, Biology, and Medicine. 2020, 14, 102143. 

https://doi.org/10.1016/j.nano.2019.102143.

Dual_effective_core-shell_electrospun_sc

36. S. Afewerki,# M. M. M. De-Paula,# B. C. Viana, T. J. Webster, A. O. Lobo, F. R. Marciano, Dual effective core-shell electrospun scaffolds: Promoting  osteoblast maturation and  reducing bacteria activity, Mater. Sci. Eng. C. 2019, 103, 109778. https://doi.org/10.1016/j.msec.2019.109778.

Combination of nejayote and swine wastew

35. I. Y. López-Pacheco, D. Carrillo-Nieves, C. Salinas-Salazar, A. Silva- Núñez, A. Arévalo-Gallegos, D. Barceló, S. Afewerki, H. M. N. Iqbal, R. Parra-Saldivar, Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci. Total Environ. 2019, 676, 356.                  https://doi.org/10.1016/j.scitotenv.2019.04.278.

Synthetic Smectic Clays Bioprinting a Sy

34. Afewerki, S.*; Magalhães, L. S. S.M.; Silva, A. D. R.; Stocco,T. D.; Filho, E. C. S.; Marciano, F. R.; Lobo, A. de O.* Bioprinting a Synthetic Smectic Clay for Orthopedic Applications. Adv. Healthcare Mater. 2019, 8, 1900158. https://doi.org/10.1002/adhm.201900158. (Cover image).

33. M. M. M. De-Paula, N. J. Bassous, S. Afewerki, P. Ghannadian, F. R. Marciano, B. C. Viana, C. R. Tim, S. V. Harb, T. J. Webster, A. O. Lobo, Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLOS ONE, 2018, 13, e0209386. https://doi.org/10.1371/journal.pone.0209386.

A sustainable strategy for production an

32. Córdova, A.; Afewerki, S.; Alimohammadzadeh, R.; I. Sanhueza, Tai, C.-W.; Osong, S. H.; Engstrand, P.; I. Ibrahem. A sustainable strategy for production and functionalization of nanocellulose. Pure Appl. Chem. 2018, aop.                       https://doi.org/10.1515/pac-2018-0204.

Prolonged_Drug-Releasing_Fibers_Attenuat

31. G. N. Salles, M. L. Calió, S. Afewerki, C. Pacheco-Soares, M. Porcionatto, C. Hölscher, A. O. Lobo, Prolonged drug releasing fibers attenuate Alzheimer´s disease-like pathogenesis. ACS Appl. Mater. Interfaces, 2018,10, 36693. https://doi.org/10.1021/acsami.8b12649.

Gelatin-polysaccharide composite scaffol

30. S. Afewerki,# A. Sheikhi,# S. Kannan, A. Khademhosseini. Gelatin-polysaccharide composite scaffolds for 3D cellular engineering: Towards natural therapeutics. Bioeng. Transl. Med. 2019, 4, 96. https://doi.org/10.1002/btm2.10124.

Smart Biomaterials-Recent Advances and F

29. P. S. Kowalski,# C. Bhattacharya,# S. Afewerki,# R. Langer, Smart Biomaterials: Recent Advances and Future Directions. ACS Biomater. Sci. Eng. 2018, 4, 3809. https://doi.org/10.1021/acsbiomaterials.8b00889.

Electrospun nanofiber composites with im

28. A. O. Lobo,* S. Afewerki,* M. M. M. De-Paula, P. Ghannadian, F. R. Marciano, Y. S. Zhang, T. J. Webster, A. Khademhosseini, Electrospun nanofiber composites with improved mechanical and biological performance. Int. J. Nanomed. 2018, 12, 7891. https://doi.org/10.2147/IJN.S175619.

Effect of ionic strength on shear-thinni

27. A. Sheikhi,# S. Afewerki,# R. Oklu, A. K. Gaharwar, A. Khademhosseini. Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels. Biomater. Sci. 2018, 6, 2073. https://doi.org/10.1039/c8bm00469b.

Laser Interference Lithography for the N

26. Nan Jiang, Haider Butt, Yunuen Montelongo, Feng Liu, Samson Afewerki, Guo-Liang Ying, Qing Dai, Seok-Hyun Yun and Ali K. Yetisen. Laser Interference Lithography for the Nanofabrication of Stimuli-Responsive Bragg Stacks. Adv. Funct. Mater. 2017, 1702715. https://doi-org.ezproxy.its.uu.se/10.1002/adfm.201702715.

Eco-friendly design for scalable direct

25. Afewerki, S.; Alimohammadzadeh, R.; Osong, S. H.; Tai, C.-W.; Engstrand, P.; Córdova, A. Eco-friendly design for scalable direct fabrication of nanocellulose. Global Challenges, 2017, 1700045.                                                           https://doi.org/10.1002/gch2.201700045.

24. Mridha, M.; Ma, G.; Palo-Nieto, C.; Afewerki, S.; Córdova, A. Synthesis 2017, 49, 383. Development of an Amino Acid/Hydroxy Oxime Dual Catalyst System for Highly Stereoselective Direct Asymmetric Aldol Reactions in the Presence of Water. Synthesis, 2017, 49, 383. https://doi.org/10.1055/s-0036-1588089.

Combinations of Aminocatalysts and Metal

23. Afewerki, S.;* Córdova, A.* Chem. Rev. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev. 2016, 116, 13512.                                                    https://doi.org/10.1021/acs.chemrev.6b00226.

22. Osong, S. H.; Norgren, S.; Petterson, G.; Engstrand, P.; Córdova, A.; Afewerki, S.; Alimohammadzedeh, R. Proceesing of nanocellulose and applications related to CTMP-based paperboard and foams. IMPC, 2016, 87.

21. Xu, C.; Afewerki, S.; Tai, C.-W.; Córdova, A. Hedin, N. Cyclopalladated Azo-linked Porous Polymers in C-C Bond-Forming Reactions: Investigation of catalytic species. ChemistrySelect 2016, 1, 5801.

https://doi-org.ezproxy.its.uu.se/10.1002/slct.201601296.

Integrated Heterogeneous Metal-Enzymatic

20. Palo-Nieto, C.; Afewerki, S.; Anderson, M.; Tai, C.-W.; Berglund, P.; Córdova, A. Integrated Heterogeneous Metal/Enzymatic Multiple Relay Catalysis for Eco-friendly and Asymmetric Synthesis. ACS Catal. 2016, 6, 3932. https://doi.org/10.1021/acscatal.6b01031.

The Use of Porous Pd2+-polyimine in Coop

19. Xu, C.; Deiana, L.; Afewerki, S.; Incerti-Pradillos, C.; Córdova, O.; Guo, P.; Córdova, A. Hedin, N. The Use of Porous Pd2+-polyimine in Cooperatively-catalyzed Highly Enantioselective Cascade Transformations. Adv. Synth. Catal. 2015, 357, 2150-2156. https://doi.org/10.1002/adsc.201500100.

Highly Enantioselective Control of Dynam

18. Afewerki, S.; Ma, G.; Ibrahem, I.; Lui, L.; Sun, J.; Córdova, A. Highly Enantioselective Control of Dynamic Cascade Transformations by Dual Catalysis: Asymmetric Synthesis of Poly-Substituted Spirocyclic Oxindoles. ACS Catal. 2015, 5, 1266. https://doi.org/10.1021/cs501975u.

17. Afewerki, S.* Doctoral Thesis, The development of catalytic enantioselective C-C bond-formation and cascade transformations by merging homogeneous or heterogeneous transition metal catalysis with asymmetric aminocatalysis, Mid Sweden University, Sundsvall, Sweden, ISBN 978-91-87557-90-3.

Enantioselective Heterogeneous Synergist

16. Deiana, L.; Ghisu, L.; Afewerki, S.; Verho, O.; Johnston, E.; Hedin, N.; Bacsik, Z.; Córdova, A. Enantioselective Heterogeneous Synergistic Catalysis for Asymmetric Cascade Transformations. Adv. Synth. Catal. 2014, 356, 2485. https://doi.org/10.1002/adsc.201400291.

Total synthesis of capsaicin analogues f

15. Anderson, M.; Afewerki, S.; Berglund, P.; Córdova, A. Total synthesis of capsaicin analogues from lignin-derived compounds by combined heterogeneous metal, organocatalytic and enzymatic cascades in one pot. Adv. Synth. Catal. 2014, 356, 2113. https://doi.org/10.1002/adsc.201301148.

Efficient and Highly Enantioselective Ae

14. Deiana, L.; Ghisu, L.; Afewerki, S.; Zhang, R.; Córdova, A. Efficient and Highly Enantioselective Aerobic Oxidation/Michael/Carbocyclization Cascade Transformations by Integrated Pd(0)- CPG nanoparticle/Chiral Amine Relay Catalysis. Synthesis, 2014, 46, 1303. https://doi.org/10.1055/s-0033-1340883.

Combined Heterogeneous Metal-Chiral Amin

13. Deiana, L.; Jiang, Y.; Palo-Nieto, C.; Afewerki, S.; Incerti-Pradillos, C. A.; Verho, O.; Tai, C.-W.; Johnston, E. V.; Córdova, A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem. Int. Ed. 2014, 53, 3447. https://doi-org.ezproxy.its.uu.se/10.1002/anie.201310216.

Highly Enantioselective Control of Dynam

12. Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.; Ibrahem, S.; Córdova, A. A palladium/chiral amine co-catalyzed enantioselective dynamic cascade reaction: synthesis of polysubstituted carbocycles with a quaternary carbon stereocenter. Angew. Chem. Int. Ed. 2013, 52, 6050. https://doi.org/10.1002/anie.201300559.

Highly Enantioselective Cascade Transfor

11. Deiana, L.; Afewerki, S.; Palo-Nieto, C.; Verho, O.; Johnston, E. V.; Córdova, A. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis. Sci Rep. 2012; 2:851. https://doi.org/10.1038/srep00851.

Palladium-Chiral_Amine_Co-catalyzed_Enan

10. Ibrahem, I.; Ma, G.; Afewerki, S.; Córdova, A. Palladium/Chiral Amine Co-catalyzed Enantioselective β-Arylation of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed. 2013, 52, 878. https://doi.org/10.1002/anie.201208634.

Catalytic_Enantioselective_β-Alkylation_

9. Afewerki, S.; Breistein, P.; Pirttilä, K.; Deiana, L.; Dziedzic, P.; Ibrahem, I.; Córdova, A. Catalytic Enantioselective β-Alkylation of α,β-Unsaturated Aldehydes by Combination of Transition Metal and Aminocatalysis: Total Synthesis of Bisabolane Sesquiterpenes. Chem. Eur. J. 2011, 17, 8784. https://doi.org/10.1002/chem.201100756.

Ref_edited.jpg

8. Afewerki, S.; Ibrahem, I.; Breistein, P.: Rydfjord, J.; Córdova, A. Direct Regiospecific and Highly Enantioselective Intermolecular α-allylic alkylation of aldehydes by combination of transition metal and chiral amine catalysts. Chem. Eur. J. 2012, 18, 2972. https://doi.org/10.1002/chem.201103366.

Peptide%20master%20thesis_edited.jpg

7. Afewerki, S.; Blixt, O.; CIausen, H.; Norberg, T.; Proceedings of the 31st European Peptide Symposium (eds. Michael Lebl, Morten Meldal, Knud J. Hensen, Thomas Hoeg-Jensen), European Peptide society, 2010. Analogs of Contulakin-G, an Analgetically Active Glycopeptide from Conus Geographus. 2010

Book chapters (*Corresponding author, #equal contribution)
Asymmetric Organocatalysis Combined with

6. Afewerki, S.*; Córdova, A.* Enamine/Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates. Top. Curr. Chem. 2019, 377: 38. Asymmetric Organocatalysis Combined with Metal Catalysis, Springer. https://doi.org/10.1007/s41061-019-0267-y

5. Afewerki, S.*; Ruiz-Esparza, G. U.; Lobo, A. O.* Antimicrobial electrospun materials, In Electrospun Materials and their Allied Applications, pp. 243-264, 2020. John Wiley & Sons. 

Racing for surface.jpg

4. Afewerki, S.*; Bassous, N.; Harb, S.; Palo-Nieto, C.; Ruiz-Esparza, G. U.; Marciano, F. R.; Webster, T. J.; Lobo, A. O.* Advances in antimicrobial and osteoinductive biomaterials, In Racing for the surface (Ed. B. Li et al.), Springer Nature, 2020, 3-34. https://doi.org/10.1007/978-3-030-34471-9_1.

nanostructured-polymer-composites-for-bi

3. A. D. R. Silva, T. D. Stocco, A. E. C. Granato, S. V. Harb, Samson Afewerki, N. J. Bassous, P. Hammer, T. J. Webster, F. R. Marciano, A. O. Lobo. Recent advances in nanostructured polymer composite for biomedical application, In Nanostructured Polymer Composites for Biomedical Applications (2019) (Ed. S. K. Swain, M. Jawaid), Elsevier.

Chiral Lewis Acids in Organic Synthesis

1. Afewerki, S.; Córdova, A. Cooperative catalysis: Lewis acids and aminocatalysis. In “Chiral Lewis Acids in Organic Synthesis” (Mlynarski, J. ed.) Wiley/CVH, Weinhei, 2017, ISBN: 9783527341290.